Dynamic Modeling of miRNA-mediated Feed-Forward Loops
نویسندگان
چکیده
Given the important role of microRNAs (miRNAs) in genome-wide regulation of gene expression, increasing interest is devoted to mixed transcriptional and post-transcriptional regulatory networks analyzing the combinatorial effect of transcription factors (TFs) and miRNAs on target genes. In particular, miRNAs are known to be involved in feed-forward loops (FFLs), where a TF regulates a miRNA and they both regulate a target gene. Different algorithms have been proposed to identify miRNA targets, based on pairing between the 5' region of the miRNA and the 3'UTR of the target gene, and correlation between miRNA host genes and target mRNA expression data. Here we propose a quantitative approach integrating an existing method for mixed FFL identification based on sequence analysis with differential equation modeling approach that permits us to select active FFLs based on their dynamics. Different models are assessed based on their ability to properly reproduce miRNA and mRNA expression data in terms of identification criteria, namely: goodness of fit, precision of the estimates, and comparison with submodels. In comparison with standard approaches based on correlation, our method improves in specificity. As a case study, we applied our method to adipogenic differentiation gene expression data providing potential novel players in this regulatory network. Supplementary Material for this article is available at www.liebertonline.com/cmb.
منابع مشابه
Noise in Feed-forward Loops for Galactose Utilization
In this chapter we study two naturally occurring feed-forward loops that are involved in galactose metabolism and transport. Despite having network structures that are capable of a producing dynamic, temporally diverse responses we find, by measuring dynamic noise correlations, that in their natural context these feed-forward loops are inactive. By perturbing genetic conditions the activity can...
متن کاملReconstruction and Analysis of Transcription Factor–miRNA Co-Regulatory Feed-Forward Loops in Human Cancers Using Filter-Wrapper Feature Selection
BACKGROUND As one of the most common types of co-regulatory motifs, feed-forward loops (FFLs) control many cell functions and play an important role in human cancers. Therefore, it is crucial to reconstruct and analyze cancer-related FFLs that are controlled by transcription factor (TF) and microRNA (miRNA) simultaneously, in order to find out how miRNAs and TFs cooperate with each other in can...
متن کاملIntegrative analysis of gene and miRNA expression profiles with transcription factor–miRNA feed-forward loops identifies regulators in human cancers
We describe here a novel method for integrating gene and miRNA expression profiles in cancer using feed-forward loops (FFLs) consisting of transcription factors (TFs), miRNAs and their common target genes. The dChip-GemiNI (Gene and miRNA Network-based Integration) method statistically ranks computationally predicted FFLs by their explanatory power to account for differential gene and miRNA exp...
متن کاملA Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator
BACKGROUND The MYC transcription factors are known to be involved in the biology of many human cancer types. But little is known about the Myc/microRNAs cooperation in the regulation of genes at the transcriptional and post-transcriptional level. METHODOLOGY/PRINCIPAL FINDINGS Employing independent databases with experimentally validated data, we identified several mixed microRNA/Transcriptio...
متن کاملModeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network
Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2012